[1] Liu K, Lei J. Bio-inspired design of multiscale structures for function integration. Nano Today
2011; 6: 155-175.
[2] Mishneaevsky JL. Micromechanics of hierarchical materials: A brief overview. Rev Adv Mater Sci
2012; 30: 60-72.
[3] Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of
collagen microfibrils from the atomistic scale up. Nano Lett 2011; 11: 757-766.
[4] Dresselhaus MS, Dresselhaus G, Saito R. Physics of Carbon Nanotubes. Carbon 1995; 33: 883-891.
[5] Rafii-Tabar H. Computational modelling of thermo-mechanical and transport properties of carbon
nanotubes. Physics Reports 2004; 390: 235-452.
[6] Muc A. Modelling of carbon nanotubes behaviour with the use of a thin shell theory. J Theor Appl
Mech 2011; 49(2): 531-540.
[7] Filleter T, Espinosa HD. Experimental-computational study of shear interactions within double-
walled carbon nanotube bundles. Nano Lett 2012; 12(2): 732-742.
[8] Tserpes KI, Papanikos P. Continuum modeling of carbon nanotube-based super-structures. Com-
posite Structures 2009; 91: 131-137.
[9] Agic A, Mijovic B. Mechanical properties of electrospun carbon nanotube composites. J Text I.
2006; 97(5): 419-427.
[10] Li Y, Qui XM, Yang F. Chirality independence in critical buckling forces of super carbon nan-
otubes. Solid State Commun 2008; 148: 63-68.
[11] Chen Y, Yin Y, Hung Y, Hwang KC. Atomistic simulations of the nonlinear deformation and
damage modes of super carbon nanotubes. J Comp Theor Nanosci 2009; 6: 41-45.
[12] Chen X, Guoxin CA. A structural mechanics study of single-walled carbon nanotubes generalized
from atomistic simulations. Nanotechnology 2006; 17: 1004-10015.
[13] Volkov AN, Zhigilei LV. Mesoscopic Interaction potential for carbon nanotubes of arbitrary length
and orientation. J Phys Chem C 2010; 114: 5513-5531.
[14] Cranford S, Yao H, Ortiz C, Buehler MJ. A single degree of freedom \lollipop" model for carbon
nanotube bundle formation, J Mech Phys 2010; 58: 409-427.
[15] Marulanda JM, Srivastava A. Numerical modeling of the I-V characteristics of carbon nanotube
field Effect Transistors. Jose Mauricio Marulanda editors. Carbon Nanotubes. InTech, 2010. ISBN:
978-953- 307-054-4. Available from: http://www.intechopen.com/books/carbon-nanotubes/numer-
ical-modelingof-the-i-v-characteristics-of-carbon-nanotube-field-effect-transistors.
[16] Timoshenko SP, Gere JM. Theory of Elastic Stability. New York: Mc Graw Hill, 1962. |
|
|