[1] Kang TJ, Kim SC. Objective evaluation of the trash and color of raw cotton by image processing and neural network. Text. Res. J: 2002; 72 (9): 776-782.
[2] Whitelock DP, Ed Hughs S, Armijo CB, Classifying cotton bark and grass extraneous matter using image analysis. Text. Res. J: 2016; 1-11.
[3] Feng JL, Yu JX. Automatic identification of ramie and cotton fibers based on iodine blue reaction, Part II: Automatic identification of ramie and cotton using color, texture, shape, and stripes. Text. Res. J: 2016: 86(15): 1637-1650.
[4] Uçar N, Ertuǧrul S. Prediction of fuzz fibers on fabric surface by using neural network and regression analysis. Fibres Text. East. Eur: 2007: 15(2): 58-61.
[5] Kang X, Xu M, Jing J, Automatic Classification of Woven Fabric Structure Based on Computer Vision Techniques. J. Fiber Bioeng. Informatics: 2015; 8: 69-79.
[6] Kuo CFG, Shih CY, Huang CC, et al. Image inspection of knitted fabric defects using wavelet packets. Text. Res. J: 2016; 86(5) : 553-560.
[7] Shiau YR, Tsai IS, Lin CS. Classifying web defects with a back-propagation neural network by color image processing. Text. Res. J: 2000; 70(7) : 633-640.
[8] Semnani D, Latifi M, Tehran MA, et al. Effect of yarn appearance on apparent quality of weft knitted fabric. J. Text. Inst: 2005; 96(5) : 295-301.
[9] Li SY, Xu BG, Fu H, et al. A two-scale attention model for intelligent evaluation of yarn surface qualities with computer vision. J. Text. Inst: 2018; 109: 798-812.
[10] Gharehaghaji, AA, Shanbeh M, Palhang M. Analysis of Two Modeling Methodologies for Predicting the Tensile Properties of Cotton-covered Nylon Core Yarns. Text. Res. J: 2007; 77(8): 565-571.
[11] El-Geiheini A, ElKateb S, Abd-Elhamied MR. Yarn Tensile Properties Modeling Using Artificial Intelligence. Alexandria Engineering Journal (2020) https://doi.org/10.1016/j.aej.2020.07.049.
[12] Khan Z, Lim AEK, Wang L, et al. An artificial neural network-based hairiness prediction model for worsted wool yarns. Text. Res. J: 2009; 79(8):714-720.
[13] Haghighat E, Safar Johari M, Etrati SM, et al. Study of the hairiness of polyester-viscose blended yarns. Part III - predicting yarn hairiness using an artificial neural network. Fibres Text. East. Eur.: 2012; 1(90): 33-38.
[14] Jaouadi M, Msahli S, Sakli F. Contribution to measurement of real yarn diameter. J. Text. Inst.: 2009; 100(2) :158-164.
[15] Ünal PG, Arikan C, Özdil N, et al. The Effect of Fiber Properties on the Characteristics of Spliced Yarns: Part II: Prediction of Retained Spliced Diameter. Text. Res. J.: 2010; 80(17): 1751-1758.
[16] Zhong P, Kang Z, Han S, et al. Evaluation method for yarn diameter unevenness based on image sequence processing. Text. Res. J.: 2015; 85: 369-379.
[17] Malik SA, Farooq A, Gereke T, et al. Prediction of blended yarn evenness and tensile properties by using artificial neural network and multiple linear regression. Autex Res. J.: 2016; 16: 43-50.
[18] El-Geiheini A, ElKateb S, Abdel-Hamied MR. Estimation of Yarn’s Coefficient of Mass Variation Utilizing Artificial Intelligence Techniques. TBIS 2020 (July-2020): pp. 521-528. |