[1] Saylan Y, Denizli A. Virus detection using nanosensors. Nanosensors for Smart Cities: 2020; 501-511.
[2] Alvarez MM, Aizenberg J, Analoui M, et al. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano: 2017; 11: 5195–5214.
[3] Malik AA, Nantasenamat C, Piacham T, Molecularly imprinted polymer for human viral pathogen detection. Mater. Sci. Eng. C: 2017; 77: 1341-1348.
[4] Hotez PG, Blue marble health and “the big three diseases”: HIV/AIDS, tuberculosis, and malaria, Microbes Infect. 2015; 17: 539-541.
[5] Chan YK, Gack MU, Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol: 2016; 14: 360-373.
[6] Song Z, Wang X, Zhu G, et al. Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small: 2015; 11: 1771-1776.
[7] Hashem IAT, Chang V, Anuar NB, et al. The role of big data in smart city. Int. J. Inf. Manage: 2016; 36: 748-758.
[8] Alvear O, Calafate CT, Cano JC, et al. Crowdsensing in smart cities: Overview, platforms, and environment sensing issues. Sensors: 2018; 18: 1–28.
[9] Zhang GA, Gu JY, Bao ZH, et al. Joint routing and channel assignment algorithms in cognitive wireless mesh networks. Trans. Emerg. Telecommun. Technol: 2014; 25: 294-307.
[10] Goode JA, Rushworth JVH, Millner PA, Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir: 2015; 31: 6267-6276.
[11] Verma N, Bhardwaj A. Biosensor Technology for Pesticides—A review. Appl. Biochem. Biotechnol: 2015; 175: 3093–3119.
[12] Saylan YF, Yilmaz E, Özgür A, et al. Molecular imprinting of macromolecules for sensor applications. Sensors: 2017; 17: 898.
[13] Cho KH, Shin DH, Oh J, et al. Multidimensional Conductive Nanofilm-Based Flexible Aptasensor for Ultrasensitive and Selective HBsAg Detection. ACS Appl. Mater. Interfaces.: 2018; 10: 28412–28419.
[14] Luigi LS, Lucio V. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. Materials: 2018; 11(4): 1–21.
[15] Osman B, Uzun L, Beşirli N, et al. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater. Sci. Eng. C.: 2013; 33: 3609-3614.
[16] Saylan Y, Yılmaz F, Derazshamshir A, et al. Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor. J. Mol. Recognit.: 2017; 30: 1–7.
[17] Wang Z, Wang X, Li M, Y. Gao, et al. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect. Adv. Mater.: 2016; 28: 9370–9377.
[18] Battal D, Akgönüllü S, Yalcin MS, et al. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine. Biosens. Bioelectron.: 2018; 111: 10-17.
[19] Cheng S, Hideshima S, Kuroiwa S, et al. Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors Actuators, B Chem.: 2015; 212: 329–334.
[20] Anik Ü, Tepeli Y, Diouani MF. Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity. Anal. Chem.: 2016; 88: 6151-6153.
[21] Lv M, Liu Y, Geng J, et al. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron: 2018; 106: 122-128.
[22] Saylan Y, Denizli A. Molecular fingerprints of hemoglobin on a nanofilm chip. Sensors: 2018; 18(9):3016-.
[23] Saylan Y, Erdem Ö, Ünal S, et al. An alternative medical diagnosis method: Biosensors for virus detection, Biosensors. 2019; 9(2): 65.
[24] Saylan Y, Erdem Ö, Cihangir N, et al. Detecting Fingerprints of Waterborne Bacteria on a Sensor. Chemosensors: 2019; 7: 33.
[25] Safran V, Göktürk, A. Derazshamshir, F. et al. Rapid sensing of Cu+2 in water and biological samples by sensitive molecularly imprinted based plasmonic biosensor. Microchem. J.: 2019; 148: 141-150.
[26] Ramanathan K, Danielsson B. Principles and applications of thermal biosensors. Biosens. Bioelectron.: 2001; 16(6): 417-423.
[27] Byrne B, Stack E, Gilmartin N, et al. Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins. Sensors: 2009; 9(6):4407-4445.
[28] Sridhar S, To KKW, Chan JFW, et al. A Systematic Approach to Novel Virus Discovery in Emerging Infectious Disease Outbreaks. J. Mol. Diagnostics.: 2015; 17(3):230-241.
[29] Usa Thisyakorn and Chule Thisyakorn, Adult Dengue: 2015; 46(4):47-56.
[30] Diel DG, Lawson S, Okda F, et al. Porcine epidemic diarrhea virus: An overview of current virological and serological diagnostic methods, Virus Res.: 2016; 226: 60–70.
[31] Balasuriya UBR, Crossley BM, Timoney PJ. A review of traditional and contemporary assays for direct and indirect detection of Equid herpesvirus 1 in clinical samples. J. Vet. Diagnostic Investig.: 2015; 27: 673–687.
[32] Chang JE, Lee DS, Ban SW, et al. Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system, Sensors Actuators. B Chem.: 2018; 255, 800–807.
[33] Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology: 2015; 479–480, 672–686.
[34] Sureau C. Hepatitis Delta Virus: Virology and Replication: 2016.
[35] Hassen WM, Chaix C, Abdelghani A, et al. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. S Sensors Actuators, B Chem.: 2008; 134(2):755-760.
[36] Uzun L, Say R, Ünal S, et al. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens. Bioelectron.: 2009; 24(9): 2878-2884.
[37] Chowdhury AD, Takemura K, Li TC, et al. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection, Nat. Commun.: 2019; 10: 4–7.
[38] Cheng Z , Yiping C , Xinmiao L , et al. Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe. Sensors (Basel, Switzerland): 2017; 17(5):1–9.
[39] Tasoglu S, Cumhur TH, Inci F, et al. Advances in Nanotechnology and Microfluidics for Human Papillomavirus Diagnostics. Proc. IEEE.: 2015; 103(2):161-178.
[40] Inan H, Wang S, Inci F, et al. Isolation, Detection, and Quantification of Cancer Biomarkers in HPV-Associated Malignancies. Sci. Rep.: 2017; 7: 1–11.
[41] Teengam P, Siangproh W, Tuantranont A, et al. Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides. Anal. Chem.: 2017; 89: 5428–5435.
[42] Peng X, Zhang D, Lu Y, et al. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sensors Actuators, B Chem.: 2019; 286: 222–229.
[43] Kreil TR. Treatment of Ebola Virus Infection with Antibodies from Reconvalescent Donors. Emerg. Infect. Dis.: 2015; 21(3): 521-523.
[44] Baca JT, Severns V, Lovato D, et al. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors: 2015; 15: 8605–8614.
[45] Natesan M, Wu SW, Chen CI, et al. A Smartphone-Based Rapid Telemonitoring System for Ebola and Marburg Disease Surveillance. ACS Sensors: 2019; 4: 61–68.
[46] Yanik AA, Huang M, Kamohara O, et al. An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media. Nano Lett.: 2010; 10(12):4962-4969.
[47] Y. Chen, R. Ren, H. Pu, X. Guo, J. Chang, G. Zhou, S. Mao, M. Kron, J. Chen, Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen, Sci. Rep. 7 (2017) 4–11.
[48] Hennessey M, Fischer M, Staples JE. Zika Virus Spreads to New Areas — Region of the Americas, May 2015–January 2016. Am. J. Transplant.: 2016, 16(3):1031-1034.
[49] Meagher RJ, Negrete OA, Van Rompay KK. Engineering Paper-Based Sensors for Zika Virus. Trends Mol. Med.: 2016; 22: 529-530.
[50] Afsahi S, Lerner MB, Goldstein JM, et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron.: 2018; 100: 85–88.
[51] Ajeet K, Adriana Y, Sanjeev K, et al. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci. Rep.: 2018; 8:3-7.
[52] Song J, Mauk MG, Hackett BA, et al. Instrument-Free Point-of-Care Molecular Detection of Zika Virus. Anal. Chem.: 2016; 88(14):7289-7294.
[53] Moulick A, Richtera L, Milosavljevic V, et al. Advanced nanotechnologies in avian influenza: Current status and future trends – A review. Anal. Chim. Acta: 2017; 983: 42–53.
[54] Tam PD, Hieu NV, Chien N D, et al. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J. Immunol. Methods.: 2009; 350(1-2):118-124.
[55] Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode[J]. Proc. Natl. Acad. Sci.: 2009; 105(52):20701-20704.
[56] Bai H, Wang R, Hargis B, et al. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1. Sensors: 2012; 12(9):12506-12518.
[57] Su D, Wu K, Krishna VD, et al. Detection of influenza A virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system. Front. Microbiol.: 2019; 10: 1–10.
[58] Siuzdak K, Niedziałkowski P, Sobaszek M, et al. Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies.Sensors Actuators, B Chem.: 2019; 280: 263–271.
[59] Joshi SR, Sharma A, Kim GH, et al. Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. Mater. Sci. Eng. C.: 2020; 108: 110465.
[60] Hai W, Goda T, Takeuchi H, et al. Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Appl. Mater. Interfaces.: 2017; 9(16):14162.
[61] Robilotti E, Deresinski S, Pinsky BA, Norovirus. Clin. Microbiol. Rev.: 2015; 28: 134–164.
[62] Ashiba H, Sugiyama Y, Wang X, et al. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosens. Bioelectron.: 2017; 93: 260–266.
[63] Marieke B, Wences A, Alejandra E, et al. Incidence and clinical profile of norovirus disease in Guatemala, 2008-2013. Clin. Infect. Dis.: 2018; 67: 430–436.
[64] Singh B, Ganguly A, Sunwoo HH. Current and Future Diagnostic Tests for Ebola Virus Disease. J. Pharm. Pharm. Sci.: 2016, 19(4): 530-551.
[65] Mustafa MS, Rasotgi V, Jain S, et al. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India: 2015; 71: 67–70.
[66] Diamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell: 2015; 162(3):488-492.
[67] Zhang GJ, Zhang L, Huang MJ, et al. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus, Sensors Actuators. B Chem.: 2010; 146: 138-144.
[68] Lim JM, Kim JH, Ryu MY, et al. An electrochemical peptide sensor for detection of dengue fever biomarker NS1. Anal. Chim. Acta.: 2018; 1026:109-116.
[69] Liu Y, Hou C, Jiao T, et al. Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials: 2018; 8(1): 35.
[70] Wasik D, Mulchandani A, Yates M. Salivary Detection of Dengue Virus NS1 Protein with a Label-Free Immunosensor for Early Dengue Diagnosis. Sensors: 2018; 18: 2641.
[71] Inci F, Tokel O, Wang S, et al. Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood, ACS Nano.: 2013; 7:4733–4745.
[72] Lu CH, Zhang Y, Tang SF, et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens. Bioelectron: 2012; 31: 439–444.
[73] Shafiee H, Lidstone EA, Jahangir M, et al. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep.: 2014; 4: 1–7.
[74] Fan Y, Zhao K, Shi ZL, et al. Bat coronaviruses in China. Viruses: 2019; 11: 27-32.
[75] Chu DKW, Pan Y, Cheng SMS, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin. Chem.: 2020; 7: 1–7.
[76] Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor, ACS Nano: 2020.
[77] Jung JH, Cheon DS, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chemie - Int. Ed.: 2010; 49: 5708–5711.
[78] Yeh YT, Tang Y, Sebastian A, et al. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci. Adv.: 2016; 2: 1-13.