[1] Gibson KE. Viral pathogens in water : occurrence , public health impact , and available control strategies. Curr Opin Virol: 2003; 4: 50–57.
[2] Hijnen WAM, Suylen GMH, Bahlman JA, et al. GAC adsorption filters as barriers for viruses , bacteria and protozoan (oo) cysts in water treatment. Water Res: 2010; 44: 1224–1234.
[3] Nieuwenhuijsen MJ, Toledano MB, Eaton NE, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes : a review. Occup Env Med: 2000; 57: 73–85.
[4] Gunten UV. Ozonation of drinking water : Part I . Oxidation kinetics and product formation. Water Research: 2003; 37(7): 1443–1467.
[5] Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources. Washington D.C.: U.S. Environmental Protection Agency, https://www.epa.gov/sites/production/files/2015 10/documents/guidance_manual_for_compliance_with_the_filtration_and_disinfection_requirements.pdf (1991).
[6] Huang W, Fang G, Wang C. The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci Total Environ 345: 2005; 345: 261–272.
[7] Hijnen W, Beerendonk EF, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan ( oo ) cysts in water : A review. Water Res: 2006; 40: 3–22.
[8] Taicheng A, Huijun Zhao PKW (ed). Advances in Photocatalytic Disinfection. Berlin, Germany: Springer:2017.
[9] Rodríguez-gonzález V, Obregón S, Patrón-soberano OA, et al. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl Catal B Environ: 2020; 270: 118853.
[10] Cho M, Chung H, Choi W, et al. Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO2 Photocatalytic Disinfection. 2005. Applied and Environmental Microbiology; 71: 270-275.
[11] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature: 1972; 238: 37-38.
[12] Mills A, Hunte S Le. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry: 2000; 108: 1-35.
[13] Foster HA, Ditta IB, Varghese S. Photocatalytic disinfection using titanium dioxide : spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol: 2011; 90: 1847–1868.
[14] Schlur L, Begin-colin S, Gilliot P, et al. Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 towards Escherichia coli bacteria abatement. Mater Sci Eng C: 2014; 38: 11–19.
[15] Mutalik C, Wang D, Krisnawati DI, et al. Light-Activated Heterostructured Nanomaterials for Antibacterial Applications. Nanomaterials: 2020; 10: 1–16.
[16] Nyamukamba P, Tichagwa L, Greyling C. The influence of carbon doping onTiO2 nanoparticle size,surface area,anatase to rutile phase transformation and photocatalytic activity. Materials Science Forum: 2012; 712: 49–63.
[17] Hoang VV, Zung H, Trong NHB. Structural properties of amorphous TiO2 nanoparticles. Eur Phys J D: 2007; 524: 515–524.
[18] Mital GS, Manoj T. A review of TiO2 nanoparticles. Chinese Science Bulletin: Physical Chemistry: 2011; 56: 1639-1657.
[19] Nan M, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology : A review. Water Res: 2010; 44: 2997–3027.
[20] Kang X, Liu S, Dai Z, et al. Titanium Dioxide : From Engineering to Applications. Catalysts: 2019; 9: 1-32.
[21] Zhang C, Li Y, Shuai D, et al. Progress and challenges in photocatalytic disinfection of waterborne Viruses : A review to fi ll current knowledge gaps. Chem Eng J: 2019; 355: 399-415.
[22] Takehara K, Yamazaki K, Miyazaki M, et al. Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation. Virus Res: 2010; 151: 102-103.
[23] Giannakis S, Liu S, Carratalà A, et al. Iron oxide-mediated semiconductor photocatalysis vs . heterogeneous photo-Fenton treatment of viruses in wastewater . Impact of the oxide particle size . J Hazard Mater: 2017; 339: 223-231.
[24] Wang X, Wang X, Zhao J, et al. Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa. Water Research: 2018; 131: 320-333.
[25] Podporska-carroll J, Panaitescu E, Quilty B, et al. Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Applied Catalysis B: Environmental: 2015; 176: 70-75.
[26] Bai H, Liu Z, Liu L, et al. Large-Scale Production of Hierarchical TiO2 Nanorod Spheres for Photocatalytic Elimination of Contaminants and Killing Bacteria. Chem Eur J: 2013; 19: 3061-3070.
[27] Delai D, Wu Y, Gao P. Effects of TiO2 nanostructure and operating parameters on optimized water disinfection processes : A comparative study. Chem Eng J: 2014; 249: 160-166.
[28] Patrón-Soberano A, Núñez-Luna BP, Casas-Flores S, et al. Photo-assisted inactivation of Escherichia coli bacteria by silver functionalized titanate nanotubes, Ag/H2Ti2O5·H2O. Photochem Photobiol Sci: 2017; 16: 854-860.
[29] Rodríguez-González V, Domínguez-Espíndola RB, Casas-Flores S, et al. Antifungal Nanocomposites Inspired by Titanate Nanotubes for Complete Inactivation of Botrytis cinerea Isolated from Tomato Infection. ACS Appl Mater Interfaces: 2016; 8: 31625-31637.
[30] Rodríguez-gonzález V, Obregón-alfaro S, Lozano-sánchez LM, et al. Rapid microwave-assisted synthesis of one-dimensional silver – H2Ti3O7 nanotubes. Journal Mol Catal A, Chem: 2012; 353-354, 163-170.
[31] Zhu D, Long L, Sun J, et al. Applied Surface Science Highly active and selective catalytic hydrogenation of p- chloronitrobenzene to p- chloroaniline on Pt @ Cu/TiO2. Appl Surf Sci: 2020; 504: 144329.
[32] Nyankson E, Agyei-Tuffour B, Adjasoo J, et al. Synthesis and Application of Fe-Doped TiO2-Halloysite Nanotubes Composite and Their Potential Application in Water Treatment. Adv Mater Sci Eng: 2019; 2019: 4270310.
[33] Razali MH, Noor AFM, Yusoff M. Physicochemical Properties of a Highly Efficient Cu-Ion-Doped TiO2 Nanotube Photocatalyst for the Degradation of Methyl Orange Under Sunlight. J Nanosci Nanotechnol: 2020; 20: 965–972.
[34] Komaraiah D, Radha E, Sivakumar J, et al. Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating. Surf Interfaces: 2019; 17: 100368.
[35] Bhardwaj S, Dogra D, Pal B, et al. Photodeposition time dependant growth , size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation. Sol Energy: 2019; 194: 618–627.
[36] Ghanbari S, Hadi M, Parviz G, et al. Synthesis and characterization of visible light driven N — Fe- codoped TiO2/SiO2 for simultaneous photoremoval of Cr (VI) and azo dyes in a novel fixed bed continuous flow photoreactor. Can J Chem Eng: 2020; 705–716.
[37] Ahadi S, Moalej NS, Sheibani S. Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sci: 2019; 96: 105975.
[38] Li R, Li T, Zhou Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment — A Review. Catalysts: 2020; 10: 1-32.
[39] Kisch H, Macyk W. Visible-Light Photocatalysis by Modified Titania. CHEMPHYSCHEM: 2002; 399-400.
[40] Wu PG, Xie RC, James A. et al. Visible-Light-Induced Photocatalytic Inactivation of Bacteria by Composite Photocatalysts of Palladium Oxide and Nitrogen- Doped Titanium Oxide. Appl Catal B: 2011; 88: 576-581.
[41] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science (80-): 2001; 293: 269-272.
[42] Hu Z, Yang C, Lv K, et al. Single atomic Au induced dramatic promotion of the photocatalytic activity of TiO2 hollow microspheres. Chem Commun: 2020; 56: 1745-1748.
[43] Hayashi T, Nakamura K, Suzuki T, et al. OH radical formation by the photocatalytic reduction reactions of H2O2 on the surface of plasmonic excited Au-TiO2 photocatalysts. Chem Phys Lett: 2019; 136958.
[44] Jeantelot G, Qureshi M, Harb M, et al. TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution. Phys Chem Chem Phys: 2019; 21: 24429-24440.
[45] Fang W, Xing M, Zhang J. Modifications on reduced titanium dioxide photocatalysts : A review. Journal Photochem Photobiol C Photochem Rev: 2017; 32: 21-39.
[46] Singhal N, Kumar U. Noble metal modified TiO2 : selective photoreduction of CO2 to hydrocarbons. Mol Catal: 2017; 439: 91–99.
[47] Gao P, Yang LB, Xiao ST, et al. Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2 (101): A DFT Investigation. Materials (Basel); 2. Epub ahead of print 2019. DOI: 10.3390/ma12050814.
[48] Ibrahim HMM. Photocatalytic degradation of methylene blue and inactivation of pathogenic bacteria using silver nanoparticles modified titanium dioxide thin films Photocatalytic degradation of methylene blue and inactivation of pathogenic bacteria using silver nanopart. World J Microbiol Biotechnol: 2017; 31: 1049-1060.
[49] Wong M, Sun D, Chang H. Bactericidal Performance of Visible-Light Responsive Titania Photocatalyst with Silver Nanostructures. PLoS One; 5. Epub ahead of print: 2010. DOI: 10.1371/journal.pone.0010394.
[50] Zhang L, Yu JC, Yip HY, et al. Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated TiO2 with Enhanced Photocatalytic and Bactericidal Activities. Langmuir: 2003; 19: 10372–10380.
[51] Roldán MV, Oña PD, Castro Y, et al. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2 -anatase containing silver nanoparticles. Mater Sci Eng C: 2014; 43: 630-640.
[52] Sunada K, Minoshima M, Hashimoto K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J Hazard Mater: 2012; 235-236, 265-270.
[53] Grass G, Rensing C, Solioz M. Metallic Copper as an Antimicrobial Surface. Appl Environ Microbiol: 2011; 77: 1541-1547.
[54] Sunada K, Watanabe T, Hashimoto K. Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination. Environ Sci Technol: 2003; 37: 4785-4789.
[55] Tang Y, Sun H, Shang Y, et al. Spiky nanohybrids of titanium dioxide / gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property. J Colloid Interface Sci: 2019; 535: 516-523.
[56] Tseng Y, Sun D, Wu W, et al. Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo. BBA - Gen Subj: 2013; 1830: 3787-3795.
[57] Kozlova EA, Safatov AS, Kiselev SA, et al. Inactivation and Mineralization of Aerosol Deposited Model Pathogenic Microorganisms over TiO2 and Pt/TiO2. Environ Sci Technol: 2010; 44: 5121-5126.
[58] Quisenberry LR, Loetscher LH, Boyd JE. Catalytic inactivation of bacteria using Pd-modified titania. Catal Commun: 2009; 10: 1417-1422.
[59] Zhou P, Yu J, Jaroniec M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv Mater: 2014; 4920-4935.
[60] Zhong R, Zhang Z, Yi H, et al. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B Environ: 2018; 237: 1130-1138.
[61] Aguirre ME, Zhou R, Eugene AJ, et al. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme : Protecting Cu2O from photocorrosion. Applied Catalysis B: Environmental: 2017; 217: 485-493.
[62] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater: 2008; 8: 76-80.
[63] Li G, Nie X, Chen J, et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res: 2015; 86: 17-24.
[64] Tatsuma T. Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. Electrochemistry Communications: 2003; 5: 793-796.
[65] Kobyla M. Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase. Catalysts Epub ahead of print 2018. DOI: 10.3390/catal8060237.
[66] Sun DD, Tay JH, Tan KM. Photocatalytic degradation of E. coliform in water. Water Research: 2003; 37: 3452-3462.
[67] Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell : Anatase TiO2–NiFe2O4 system. Materials Science & Engineering B: 2005; 119: 144-151.
[68] Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell : TiO2 –NiFe2O4 biomaterial system. Acta Biomaterialia: 2005; 1: 691-703.
[69] Wang X, Lim T. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation. Water Res: 2013; 47: 4148-4158.
[70] Elahifard MR, Rahimnejad S, Haghighi S, et al. Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria. J Am Chem Soc: 2007; 129: 9552-9553.
[71] Chen W, Tsai P, Chen Y. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small,Wiley InterScience: 2008; 485-491.
[72] Ma N, Fan X, Quan X, et al. Ag–TiO2/HAP/Al2O3 bioceramic composite membrane : Fabrication , characterization and bactericidal activity. Journal of Membrane Science: 2009; 336: 109-117.
[73] Zhu Q, Hu X, Stanislaus MS, et al. A novel P/Ag/Ag2O/Ag3PO4/TiO2 composite fi lm for water puri fi cation and antibacterial application under solar light irradiation. Science of the Total Environment: 2017; 577: 236-244.
[74] Raimond JM, Brune M, Computation Q, et al. Electric Field Effect in Atomically Thin Carbon Films. Science (80-): 2004; 306: 666–670.
[75] Georgakilas V, Perman JA, Tucek J, et al. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem Rev 2015; 115: 4744–4822.
[76] Cao B, Cao S, Dong P, et al. High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater Lett 2013; 93: 349–352.
[77] Akhavan O, Ghaderi E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation. J Phys Chem C 2009; 113: 20214–20220.
[78] Zargari S. A4 - Rahimi, R. A4 - Yousefi, A. SA-Z. An efficient visible light photocatalyst based on tin porphyrin intercalated between TiO₂–graphene nanosheets for inactivation of E. coli and investigation of charge transfer mechanism. RSC Adv: 2016; 6(29): 24218-24228.
[79] Fernandez-ibanez P, Malato S, Wadhwa S. Solar photocatalytic disinfection of water using titanium dioxide graphene composites Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Epub ahead of print. Chemical Engineering Journal: 2015; 261:36-44
[80] Czech BWB. Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes / TiO2/SiO2 nanocomposites. Environ Res: 2015; 137: 176–184.
[81] Kongkanand A, Kamat PV. Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor–SWCNT Suspensions. ACS Nano: 2007; 1: 13–21.
[82] Cao Y, Zhou H, Qian RC, et al. Analysis of the electron transfer properties of carbon quantum dots on gold nanorod surfaces via plasmonic resonance scattering spectroscopy. Chem Commun (Camb): 2017; 53: 5729-5732.
[83] Sarkar S, Banerjee D, Ghorai UK, et al. Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots. J Lumin: 2016; 178: 314–323.
[84] HU L, Lee G, JC P, et al. Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts. Chem Eng J: 2014; 240: 91–98.
[85] Youji L, Mingyuan MA, Xiaohu W, et al. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study. J Environ Sci: 2008; 20: 1527–1533.
[86] Raut AV, Yadav HM, Gnanamani A, et al. Synthesis and characterization of chitosan-TiO2 : Cu nanocomposite and their enhanced antimicrobial activity with visible light. Colloids Surfaces B Biointerfaces: 2016; 148: 566–575.
[87] Shim J, Seo Y, Oh B, et al. Microbial inactivation kinetics and mechanisms of carbon-doped TiO2. J Hazard Mater: 2016; 306: 133–139.
[88] Markowska-szczupak A, Rokicka P, Wang K, et al. Photocatalytic Water Disinfection under Solar Irradiation by D -Glucose-Modified Titania. Epub ahead of print. Catalysts: 2018. DOI: 10.3390/catal8080316.
[89] Rubio D, Casanueva JF, Nebot E. Improving UV seawater disinfection with immobilized TiO 2 : Study of the viability of photocatalysis (UV 254/TiO2) as seawater disinfection technology. Journal of Photochemistry and Photobiology A:Chemistry: 2013; 271: 16–23.
[90] Xu T, Zhao H, Zheng H, et al. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water. Chem Eng J: 2020; 385: 123832.
[91] Kangwansupamonkon W, Lauruengtana V. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine Nanotechnology, Biol Med: 2009; 5: 240–249. |